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To form the basis spin states of a field, vector states  of the multicomponent wave function to the four 
coordinates of Minkowski space that determine the position of the local observer have been added by 
angular extra dimensions that determine the orientation of the local observer. The generators of the 
Poincare group in the angular representation have been obtained. The Dirac equation (generalized for 
any spin) and Maxwell’s equation have been designed from these generators. In the framework of 
transformations of the Lorentz group in angular representation united with its transpose representation, 
the transformations of the (generalized) Dirac equations that is similar to the Heaviside-Larmor 
transformations for Maxwell’s equations have been performed. As a result, the Dirac equation for the 
Dirac monopole, which corresponds to a particle with mirror symmetry have been obtained. Indication 
of a low probability of the existence of the Dirac monopole had been obtained. 
 
Key words: Spinor representation of the Poincare group, seven dimensions of space-time, mirror symmetry. 

 
 
INTRODUCTION 
 
Hidden harmony is stronger than the explicit one. 
Heraclitus Space-time and matter are inseparable from 
each other. Classical mechanics knows two classes of 
systems: "material points" and "rigid bodies". In building 
up a general mathematical theory applying to any 
system, one usually starts from the equations of motion 
of a material point. From a physical point of view, 
however, the idea of "rigid body" is as fundamental a 
conception as the idea of "material point" (Casimir, 1931). 
Quantum-mechanical theory of angular momentum of a 
rigid body has a strong position in the mathematical 
formalism of modern quantum physics (Bidenhander  and 

Lauk, 1984; Varshalovich, 1975). This formalism includes 
the use of Wigner D functions dependent on Euler angles 
φ,θ,γ  determining the orientation of the local observer in 
relation to the ordinary meter. This formalism allows to 
determine the direction of a vector in space, the 
orientation of the local observer, addition of vectors, basis 
states with spin and their transformation properties under 
rotation through the functions of φ,θ and γ  at once for all 
points in space without reference to a specific point x1, x2, 
x3, t, but connected with the orientation of the meter. 

In the space of orientations of the observer (of the rigid 
body) there exist  Wigner D

j 
 functions,  for  a  half-integer
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value of j which are transformed with using the group 
SU(2) instead of SO(3) when turn in the space of x1,x2,x3 
and t takes place. In Minkowski space there do not exist 
objects whose functions are transformed using the group 
SU(2) (Sventkovsky, 2004). 

Similar to the fact that the position of the particle is 
described by wave function depending on the x1, x2, x3, 
and t, the orientation of the particle (an electron is a point 
particle) also may be described by a wave function 
depending on its possible orientations φ,θ and γ.  

In this paper, the emphasis has been shifted from the 
consideration of transformations themselves to the 
objects of transformations. For this purpose, besides the 
ordinary coordinate system called the meter two local 
observers (ordinary and rotated) have been introduced in 
Minkowski space-time which have the center at the same 
point x1, x2 and x3 related to the position of the particle 
field. The ordinary observers are parallel to the meter. 
The use of the ordinary local observer is due to the 
known position that a rotation of the meter in the 
neighborhood of x1, x2 and x3 can be divided into two 
transformations: The translation of a point which does not 
change the angle variables and the rotation of the 
ordinary local observer around the point x1, x2 and x3 in 
the coordinate system with center at the point x1, x2 and 
x3 and by the same angle. 

The transformation properties of the spin state under 
rotation of the meter are offered to describe identically 
under rotation of the rotated local observer.  

Interpretation of the well-known principle of 
superposition (spin) states for multicomponent wave 
functions as the principle of superposition of states for 
any fixed direction at every point was the basis for the 
introduction of new angular dimensions for the wave 
function. 

A multicomponent wave function describing vector 
fields, particles with spin in Murkowski space, is propose 
equivalently interpreted as the presence of an internal 
rotational degree of freedom (field) at each local point 
that are not related to the spatial variables. Angular extra 
dimensions φ,θ and γ have been introduced in 
Sventkovsky (2004), but a number of important 
provisions of the theory are not expressed or are 
expressed only partly. In Portnov (2011), there is a 
discussion of the use of these variables in the 
development of general relativity theory, but not at the 
quantum level. 

The physical foundations for the introduction of extra 
dimensions for explaining the nature of multicomponent 
wave function with known Lorentz transformation 
properties of states with spin, intrinsic parity as an internal 
degrees of freedom of the fields are discussed in the 
article.  

Symmetry of the equations of quantum mechanics and 
Maxwell equations has a higher order than the symmetry 
associated only with the group of Lorentz. A generalized 
Lorentz  group   corresponding  to  the  unification  of  the  
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Lorentz group in the matrix (spinor, vector) representation 
and its transpose representation has been obtained in 
Sventkovsky (2004) for any j in operator form. The group 
of internal symmetry is considered as a sub-group of the 
generalized Lorentz group and corresponds to the 
transition from one type of particles, fields and 
representations to another. 

The equivalence between the Schrodinger operator 
equation and Heisenberg’s matrix mechanics was proved 
in 1927 for operators dependent on the time-space 
coordinates (Teschl, 2009). A similar construction 
(substitution of matrices by operators) concerned only 
with the operators acting on the angular variables which 
are introduced to explain the nature of spinors and vector 
fields is considered in the present paper. The relationship 
between Dirac matrices, the equations of Maxwell and 
generators of the generalized Lorenz group is also 
studied in the article. 
 
 

TWO INTERNAL LOCAL OBSERVERS WITH THE 
CENTER AT ONE POINT 
 

The meter is the original right Cartesian coordinate 
system. At the center of the point x1, x2 and x3 original 
local observer with unit vectors X1,X2 and X3 parallel to 
the meter were introduced. For describing objects with 
zero size at the center of the point x1, x2 and x3, a rotated 
local observer with unit vectors  X

(1)
,X

(2)
 and X

(3)
 and with 

the orientation defined by three independent Euler angles 
φ3=φ, φ

(3)
=γ  with respect to the local original observer 

were introduced as shown in Figure 1. In fact, instead of 
one rotated observer are introduced a lot of rotated 

observers ,  and . Turning one rotated observer 
means turning a lot of the multidirectional rotated 
observers. 

The superscript and the subscript in operators X
(k)

, J
(k)

, 
Ji, Q

(k)
i refer to respectively the rotated observer with unit 

vector X
(k)

 and to the ordinary observer with unit vector Xi. 
The rotation matrix can be written in a symmetrical form 
with respect to the two local observers (Bidenhander and 
Lauk, 1984):  
 

Rij=(X
(i)

,Xj), (X
(1)

,X
(2)

,X
(3)

)=R(X1,X2,X3)=R3() R2() R3().  

X
(1)

1=–sin() sin()+cos() cos() cos(), X
(2)

3=sin() sin(),                                

X
(1)

3=–sin() cos(), X
(1)

2=cos() sin()+cos() sin() cos(), 

X
(2)

1=–sin() cos()–cos()cos() sin(),  

X
(2)

2=cos() cos()–cos() sin() sin(), 

X
(3)

1=sin() cos(), X
(3)

2=sin() sin(), X
(3)

3=cos(),   
 

The generators of the rotation group Jk or angular 
momentum operators of rigid body will be called the 
generators of the vector rotations relative to the original 
local observer. The projections Jk onto the axis of the 
rotated local observer: J

(k)
=(X

(k)
J) are considered in 

literature as the operators of the angular momentum of a 
symmetric top. Let εi,j,k is the antisymmetric tensor ε1,2,3=1. 
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Figure 1. The orientation of the rotated local observer with respect to the 
original local observer. 

 
 
 

J1=i cos() ctg() /+i sin() /–i cos()/sin() /,                

J2=i sin() ctg() /–i cos() /–i sin()/sin() /, 

J
(1)

=–i cos()  ctg() / –i sin() /+i cos()/sin() /,                 

J
(2)

=i sin()  ctg() / – i cos() / – i sin()/sin() /,    

J3=–i /,    

J
(3)

=–i/ 

[Ji, Jn]=iink Jk,[J
(i)

, J
(n)

]=–iink J
(k)

, [Ji, J
(n)

]=0                 (1) 
 
The operators J

(n)
 are generators of the transposed 

rotation group, they are also generators of a group of 
rotations of the rotated local observer X

(1)
,X

(2)
,X

(3)
 relative 

to himself. It is impossible to interpret the rotation by 
means of operators Jk by the rotation by means of 
operators J

(n)
, as the operator Jk cannot be obtained from 

J
(n)

 by using a unitary similarity transformation 
(Bidenhander and Lauk, 1984).  The operators Jk=X

(n)
k 

J
(n)

 are   projections of J
(n) 

onto the axis Xk and invariant 
under rotation using J

(n)
.   

Vectors in coordinate system X
(k)

 will be called 
isovectors and rotation using J

(k)
 will be called rotation in 

the isovectors space.  
Wigner D functions, D

j
mm'  are the eigenfunctions of the 

angular momentum operators J3, J
(3)

, J
2
=Jk Jk. This 

corresponds to the symmetry between the original 
observer and rotated observer and so it is written in this 
form: 
      

D*
(1/2)

=(
(1/2)

,
(-1/2)

),   
(1/2)

=( 1, 2),  
(-1/2)

=(3,4). 

1=cos(/2) exp(i/2+i/2),  

3=– sin(/2) exp(–i/2+i/2)               (2) 
 

2=sin(/2)  exp(i/2–i/2), 4=cos(/2)  exp(–i/2–i/2)                
 
The known symmetry operator between the original local 
observer and  the rotated local observer has  the form  

W: ' =, ' =-, ' =, (Bidenhander and Lauk, 1984) and 
formally implements permutation by the places of these 
observers. The operator W corresponds to  the  operation 

of transposition for the representation of a rotation group 
which is denoted by icon 

T
. The icon 

-
,
*
 is the operation of 

complex conjugation. For example: 
 
J

(k)
=(-1)

k+1 
W Jk, W D

j
=D

jT
, X

(k) 
n=(-1)

k+n 
W X

(n)
k.           (3) 

 
The Euler angles φ, θ, and γ that determine the 
orientation of the local rotated observer relatively to the 
meter were named as extra dimensions to the four 
coordinates of the Minkowski space. 

The elements of the new space φ, θ and γ   are Wigner 
D functions, D

j
m,m' which are transformed using the group 

SU(2). The double space of all possible orientations for 
the rotated observer corresponds to the space domain of 
the angles Wigner D functions with volume ∫∫dΩdγ=16 π

2
, 

dΩ=sin(θ) dθ  dφ, Ω is a solid angle (Bidenhander and 
Lauk, 1984). The Wigner D functions, D

(j)
, X

(k)
n are bases 

of orthogonal functions: 
 

<ξ
(m)

i | ξ
(k)

n>=∫∫ξ
(m)

i
*
ξ

(k)
ndΩ dγ=δi,nδm,k /b

2
 

 

where b= )12( j /(4π),<,> icons are used only for the 

orientations space, and δi,k is the Kronecker delta, δk,k=1. 
Any column ξ

(m') 
of the matrix D

(j)*
 is transformed in the 

same manner as a spinor j under spatial rotation and 
corresponds to a complete set of basis vectors describing 
states with spin j, (Varshalovich, 1975), as Jξ

(m')T
=ξ

(m')T
S, 

[Si,Sn]=iink Sk, Si is the matrix operator of angular 
momentum. 

The rotated observer for state j also as original 
observer has 2j+1 degrees of freedom corresponding to 
the analog of the spin projections m'=-j..,+j, 
 
J

(3) 
ξ

(m')
=m' ξ

(m')
  

 
For example j=1/2, 2Sn=ζn are Pauli matrices. Let ξm be 
any m string of the matrix D

j*
. Using the operator W, the 

identities were obtained: 



 
 
 
 
J

(k)
ξm=ξm Sk

T
, S

T
k=(-1)

k+1
Sk, ξm=Wξ

(m)T
, 

J
(+)=

J
(1)

-iJ
(2)

,J
(+)

ξ
(m')

= )1')('(  mjmj ξ
(m+1')

 

 
Taking into account the completeness of the system of 
bases D

j
, any spinor j, ψ

T 
=(ψj, ψj-1, .., ψ-j) can be 

represented as a linear combination ξ
(m') 

of the spinors j, 
which depend only on φ, θ and γ (Bidenhander and Lauk, 
1984). 

The transformation using exponential operator is taken 
using the Baker-Campbell-Hausdorff formula: 

 
ψ'=exp(A) ψ, exp(A)=1+A+A

2
/2!+A

3
/3!+..;   

B'=exp(A) B exp(-A),  
exp(A) B exp(-A)=B+[A,B]+1/2![A[A,B]]+1/3![A[A[AB]]]+.. 
 
The presence of well-known transformational properties 
of these bases of spinors ξ

(m')
, vectors X

(k)
, (Bidenhander 

and Lauk, 1984) is based on the premise that the bases 
themselves are presented as the rotation matrix D

j
, (R) 

under the turn of the original local observer onto Euler 
angles α,β and c. 
 
D

j
(φ',θ',γ')*

T
=D

j
(φ,θ,γ)*

T
 D

j
(α,β,c)= 

=(exp(-iα J3) exp(-iβ J2) exp(-ic J3))
 
D

j
(φ,θ,γ)* 

T
,            (4) 

 
D

j
(α,β,c)=exp(-iα S3) exp(-iβ S2) exp(-ic S3). 

 
The rotations of the original local observer (Equation 4) 
and the rotated local observer onto angles ω are also 
realized by the rotation operators exp(-iωJn) and exp(-
iωJ

(k)
). 

We have identities: 
 
exp(-iω Jn) (X

(p)
1 ,X

(p)
2 ,X

(p)
3 )=(X

(p)
1 ,X

(p)
2 ,X

(p)
3 ) Rn(ω), 

exp(-iω J
(k)

) (X
(1)

n ,X
(2)

n ,X
(3)

n )=(X
(1)

n ,X
(2)

n ,X
(3)

n ) Rk(ω)
T
 

exp(-iω Jn) (ψ 1, ψ 2)=( ψ 1, ψ 2) exp(-iω ζn), 
exp(-iω J

(k)
) (ψ 1, ψ 3)=( ψ 1, ψ 3) exp(-iω ζk

T
). 

 
The known spatial transformation and Lorentz 
transformation can be obtained in two equivalent ways, 
both with the help of generators of the Lorentz groups 
and with the help of the transformation of angles φ, θ and 
γ which correspond to the transformations of the vectors 
X

(1)
,X

(2)
 and X

(3)
. For example, rotating the meter around 

the x3 axis by an angle α is accompanied by a 
transformation of the angle φ'=φ-α, hence ξ

(±1/2)
'=exp(-iα 

ζn/2)ξ
(±1/2)

 is gotten. 
Assuming that the spinors ξ

(±1/2) 
are a Weyl spinors 

which has the known Lorentz transformation with velocity, 
v=|v|x3, th(χ)=v/c, ξ

(±1/2)
m'=exp(±m χ)ξ

(±1/2)
m  and taking 

into account the symmetry by angle φ, the following 
angular transformation were obtained: φ'=φ, γ'=γ, 
tg(θ'/2)=exp(-χ) tg(θ/2); and a scale transformation of the 
basis which is the same for each j, D

j
, in the class 2j. 

Further, that this transformation does not change the 
orthogonality between the vectors X

(n)
 can be verified. 

Substituting the Lorentz transformation of ψk into  identity: 
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X

(3)
3=ψ1ψ4+ψ2ψ3, X

(0)
0=ψ1ψ4-ψ2ψ3, X

(1)
3=ψ3ψ4-ψ1ψ3, 

X
(2)

3=ψ3ψ4+ψ1ψ3, X
(n)

k=ψ2J
(n) 

Jk ψ*
T
, ψ=(ψ1,, ψ2, ψ3, ψ4). 

 

That the Lorentz transformation-X
(3)

3 ,X
(0)

0 and x3, t is 
realized in the same way as a four-dimensional vector x, t 
and X

(3)
,X

(0)
0 has a length of zero was obtain. Also that 

X
(1)

,-X
(2)

 are transformed as bivector E and H of the 
electromagnetic field X

(1)
3=X

(1)
3', X

(2)
3'=X

(2)
3 was obtained. 

For a unified description of states with spin j, vector and 
tensor fields dependent on the orientation of the meter, 
we introduce the state of a class 2j, as a class of 
functions Ψ=ψ C which may be represented by a 
homogeneous polynomial of degree 2j of ψk, (2) 
(Varshalovich, 1975). This class corresponds to the 
principle of superposition of states. For example, the 
Wigner D function, D

j 
has a class 2j.The Lorentz 

transformation does not change the class2j of functions 
Ψ since  ψk, (2), j=1/2 are linearly transformed. 

The introduction of the state of class 2j is also 
associated with the expansion of the description of 
spinors j under the Lorentz transformation and is also 
connected with the overcoming of the difficulties 
associated with the ambiguity of the transformations of 
the wave function from the angular variables and which is 
also of the analogous difficulties described in Cartan 
(1927) under the matrix interpretation. 

Example, under the Lorentz transformation of spinor j 
or D

j
 may appear additional summands (components) in 

the form spinor j-1, j-2 or X
 (0)

0D
j-1

, X
 (0)

0
2
D

j-2
, where X

 

(0)
0=ψ1 ψ4-ψ2ψ4=1 is a dimensional unit function of class 

2. These summands do not change the class and do not 
appear under the spatial rotations. 

In addition, the following operators can be formally 
represented in the identical ladder form that does not 
change the class (Jante and Schroers, 2016): 
 

8J3=ψ1/ ψ1-ψ2/ψ2+ψ3/ψ3-ψ4/ψ4, 

4J-=ψ2 /ψ1+ψ4/ ψ3, 4J
(+)

=ψ1/ψ3+ψ2/ψ4 
 

The states with spin 1/2 has the next unique property: In 
the summation of states ψ1, ψ2 (or ψ3, ψ4), C=(C1,C2), 
Ψ=C1 ψ1+C2ψ2 that corresponded to different orientations 
of spin, there is always such a rotated coordinate system 
X'k=C ζk C

T*
 in which the spin is described by C'=(1, 0) 

and Ψ  has the same form Ψ=ψ1. There are only two 
independent forms (functions) ψ1 and ψ4 except for their 
linear combination, where ψ1=ψ4

*
. This property will be 

named to the property unchangeability of form of the 
angular function when similar states are added. 

A multicomponent wave function C=(Cj,Cj-1, ..,C-j)=Ck |k 
> corresponding to the spin (vector) states   in the 
isotropic Minkowski space  is proposed equivalently (one 
to one) to   describe as a one-component wave function 
Ψ=Ck ψk   space, where |k>=(0, ..0, 1, 0..0) is unit basis, 
Ck depends only on x1, x2, x3, t and ψk, depends only on 
φ, θ and γ. This corresponds to the replacement in the 
wave function of the matrix basis | k> by an operator 
basis ψk with the same  transformation  properties  as  for  
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the matrix basis using group SU(2).  φ, θ and γ may be 
interpreted as the possible orientation of the particle. The 
decomposition of Ψ in the basis ψk corresponds to the 
multicomponent wave function C. 

 

Ci=<Ψ| k>, J3Ψm=m ψm, C
T
C=<Ψ|Ψ>, <ψi |ψk>=δik. 

 
For the physical meter in Minkowski space angular 
dimensions are hidden, internal and not observable, that 
is, all physical quantities at each point of space are 
calculated as average values over double the space of all 
orientations. 

The elements of the seven-dimensional space are the 
one-component wave functions Ψ=ψC. 

Spatial transformation properties of spinors C are 
provided by the choice of ψ in the form of the spinor as 
any a linear combination of spinors ξ

(m')
, j and 

Sommerfeld conditions, according to which the wave 
function Ψ=ψC must be invariant under the Lorentz 
transformations ψC=ψ'C'. Therefore, the transformation 
properties of basis ψ and C are related to each other, 
namely: 
 
if ψ'

T
=U ψ

T
, C'=V C then U

T
 V=1, V=(U

-1
)
T
 

 
The rotation matrices U and V are unitary matrices so 
V=U

*
. For Ψ=ψC the vectors ψ=X

(k)
 and C have the same 

(identical) transformational properties as: 
  
U=R(α, β, c)

-1
, V=R

-1
 

 
For the spinor we have: 
 
ψ'

T
=D

j
(α,β,c)

T 
ψ

T
,  C'=D

j
(α,β,c)

T* 
C,   

(ψ1', ψ2')=(ψ1, ψ2) exp(-iω ζn), C'=exp(i ω ζn) C, 
 

Lorenz transformation properties of spinor C are provided 
selecting ψ in the form specific of a linear combination of 
ξ

(m')
, j which satisfy the famous Lorentz transformations of 

the spinor C. 
All dimensions x1, x2, x3, t and φ, θ, and γ are mutually 

independent, but their transformational properties, except 
translation, are interconnected. The transformation 
properties of fields (vector, spin, etc.), except translation, 
are fully described the transformation properties of the 
basis functions   of φ, θ and γ. 

Note that a field is present only in C, but ψ has no field, 
because φ, θ, and γ have no relation to the coordinates 
x1, x2 and x3 and to the position of the local meter. The 
initial values φ, θ and γ (countdown) are related only to 
the orientation of the meter. Generators of the group J

(k)
, 

Jn, /φ, /θ and /γ act only on basis functions  ψ in 
Ψ=ψ C, but not on the field C. 

Each representation of spinors ξ
(k)

, k=-j, .j , may have 
its own invariant Ψk=C

(k)
ξ

(k)
 under spatial rotations. After 

completing the Lorentz transformation (Sventkovsky, 
2004) for arbitrary spinor ξ

(k)  
which  is  a  basis  of  spatial  

 
 
 
 
rotations, the full extended Lorentz basis j was gotten. 
Moreover, the extended components of the basis are also 
spinors corresponding j'=j-1, j-2....., X

(0)
0ξ

(n)
, X

(0)
0
2
ξ

(n)
.. 

The wave function Ψ of the class 2j can be composed 
of 2j+1 independent Lorentz invariants  
Ψ

(j)
k=C

(k)
ξ

(k)
+C

(n)
ξ

(n) 
obtained from 2j+1 invariants of 

C
(k)

ξ
(k)

, k=j, j-1, ..-j under spatial rotations, plus the 
invariant C

(n)'
ξ

(n)'
obtained via extended Lorenz basis ξ

(k)
. 

 
 
Theorem 1 
 
A spatial inversion leads to internal inversion Î. Ṕ: t'=t, 
x'i=-xi;  Î:φ'=π+φ, θ'=π-θ, γ'=π-γ, which is a equivalent to 
the turn of the rotated local observer about axis X

(2)
 by 

angle-π.This follows from the identities: 
 
Î ξ

(±j)
=(-1)

j
 

_j
ξ

(
 

)
, Î

2
 ξ

(±j)
=(-1)

2j
ξ

(±j)
,Ji=Î Ji, ÎX

(k)
=(-1)

k
  

X
(k)

,Î=exp(iπ J
(2)

) 
 
The law of conservation of parity is directly related to the 
conservation of symmetry between the left and the right. 
The bases D

j
m,m' and D

j
m,-m'  are linked by inversion 

transformation Î D
j
m,m'=(-1)

j-m'
D

j
m,-m' . 

 This allows to divide the entire basis into two equal 
groups of basis, except the case m'=0 for the whole j. 
The group of bases m'> 0 is called the left and its mirror 
m'< 0 is called the right. The difference (balance) 
between the left and the right, with weight m', is 
calculated as the average value of the operator J

(3)
. For 

example: 
 
Ψ=C

(m') 
D

j
m,m'+C

(-m') 
D

j
m,-m' , <Ψ|J

(3)
|Ψ>b

2
=m' (|C

(m')
|
2
-|C

(-

m')
|
2
) 

 
The complex conjugation operator has the form: 
 
exp(iπJ

(2)
) exp(-iπJ2)D

j
m,m'=D

j
m,m'*. 

 
 
The models of the electromagnetic field 
 
In accordance with the quantum formalism, to describe 
the electromagnetic field, besides E, H we introduce the 
wave function in the form:  
  
ΨEH=EX

(1)
+HX

(2)
, ΨA=AX

(3)
+A0c X

(0)
0, F

(1)
=E, F

(2)
=H, 

F
(3)

=A, F
(0)

0=A
0
c, F

(k)
=b

2
<Ψ|X

(k)
>, F

(±)
=F

(1)
 iF

(2)
 

 
E, H and A, A0 may be considered as the amplitudes of 
the wave function of basic states of the electromagnetic 
field. The bases of the vector electromagnetic field 
directed along the axes of xk in the  symmetric form X

(n)
k, 

X
(0)

0 with respect to two observers X
(3)

, X3 have been 
found from the well-known transformation properties of 
the electromagnetic field and from the condition of 
invariance Ψ=ψ C.   



 
 
 
 

The bases X
(n)

k, X
(0)

0 correspond to a complete set of 
orthogonal basis functions for the state of the class 2j=2. 
The wave function, the electric field and the magnetic 
field has the form. 

Why is the sum of two electrical vectors equal to the 
electric vector?  

Because basis functions X
(p)

k, under their arbitrary 
addition at p constantly have property unchangeability, 
same functional dependence on angular dimensions  
(analog of property  of form)  in some  rotated coordinate 
system, which always exists. Namely: for any vector 
states C=(C1,C2,C3), Ψ=CX

(p)
, there is always such a 

rotated coordinate system X3'=C'/|C'| in which vector 
C'=(0, 0, |C|) and Ψ'=C'3X

(p)
'3. That is, Ψ' have the same 

functional dependence with X
(p)

3 . Example: 
 
X

(p)
2=exp(iπ/2J1) X

(p)
3, X

(p)
1=exp(-iπ/2J2) X

(p)
3, 

X
(p)

2=X
(p)

1(φ+π/2). 
 
According to the principle of superposition of states, the 
addition of vectors of the electric field and of the magnetic 
field coincides with the addition of their models Ψ as a 
function of the angles φ, θ and γ. For example: 
 
Ψ=EX

(1)
, Ψ=HX

(2)
,  Ψ(E1)+Ψ(E2)=Ψ(E1+E2). 

 
For the class 2, only vector basis, but not spin basis has 
this property of the same form. There are only three 
independent the forms for j=1, except for their linear 
combination, which correspond to three functions X

(p)
3 , 

p=1, 2, 3. The proof follows from the completeness of a 
10-dimensional basis for class 2. 

For  of class 2 there are only 3 Lorentz invariant 
(Sventkovsky, 2004): 

 
C

(±1)
ξ

(±1)
=F

(
 

)
X

(±)
,C

(0)
ξ

(0)
+C

(0)
0 X

(0)
0=F

(3)
X

(3)
+F

(0)
0 X

(0)
0=ΨA 

 
The real part of the invariants Ψ

(±)
=F( ) X

(±) 
is obtained 

from the sum (difference) of the complex invariants,  
corresponds to the wave function of the electromagnetic 
field which has a zero projection of the (iso) vector 
operator Jk, J

(n)
 at each point of Minkowski space. 

 

=EH=EX
(1)

+HX
(2)

, HE=-HX
(1)

+EX
(2)

, <|Ji|>=0, 

<|J
(n)

|>=0. 
     
The Lorentz transformations X

(k)
 with the condition of 

Sommerfeld about the invariance of the wave function 

=E X
(1)

+H X
(2)

, provide the well-known Lorenz 
transformation properties of the fields E,H,A,A0. 
 

=EH=EX
(1)

+HX
(2)

, HE=-HX
(1)

+EX
(2)

, <|Ji|>=0, 

<|J
(n)

|>=0. 
 
Mathematically the vectors can be added as objects 
having different directions, but in physics objects are 
always  added   as   objects   with   one   and   the   same  
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direction. For example, a physical object is a set of 
projections of a vector. The addition of vectors will be 
regarded as the addition of a set of unidirectional 
projections. A vector has one to one correspondence with 
a set of its projections and vice versa. The projections are 
directed to the center of the vector for positive values of 
the projections and from the center for negative values. 
The basic states of the fields E,H,A which are directed 
along the axis x3, have the form: 
 
X

(1)
3=-sinθ cosγ , X

(2
)3=sinθ sinγ , X

(3)
3=cosθ. 

 
To visualize the model of basic states in the center of the 
local observer, imaginary sphere of unit radius X

(3)
 is 

introduced; iθ, iφ, i3 are spherical orts, given: 
 
X

(1)
(φ,θ, 0)=iθ, X

(2)
(φ, θ, 0)=iφ, X

(3)
(φ, 0,γ)=i3. 

 
The vector iθ is assigned to the projection of cosγ on the 
sphere. The vector iφ is assigned to the projection of sinγ 
on the sphere. The vector i3is assigned to the projection 
of cos(θ), that are directed along ir. Then replace the cosγ 
on iθ in X

(1)
3 , sinγ on iφ in X

(2)
3 and X

(3)
3=cos(θ) will be 

considered as a set of projections of i3, directed along ir. 
The resulting visual model of the electromagnetic fields, 
correspond to a basis states X

(1)
3 ,X

(2)
3 ,X

(3)
3 and X

(0)
0 

shown in Figure 2. 
The polarity of the vector of electric field, the axial 

symmetry of the vector of magnetic field has been 
reflected in this mode. E, H, A, A0 c and X

(1)
,X

(2)
,X

(3)
,X

(0)
0 , 

under the spatial inversion are transformed identically Î 
X

(k)
=(-1)

k 
X

(k)
. 

 
 
The generalized Lorentz group in the angular and 
matrix representation for transformations of spinors, 
tensors 
 
The lie algebra of the groups Lorenz (Equation 5), 
Poincare (Equation6) and its generators in the coordinate 
representation (Ohnuki, 1988); L=(M23,M31,M12), 

K=(M01,M02,M03), where Mij=xi Pj-xj Pi, x0=t, and Pi =−i/xi, 

P0 =i/t are operators of momentum and energy, have 
the form: 
 

[Li,Ln]=iink Lk, [Ki,Ln]=iink Kk, [Ki,Kn]=-iink Lk.                 (5) 
 

[Pi, Pk]=0, [Kk, Pk]=-i P0, [Li, Pn ]=iink Pk, [Ki, P0]=-i Pi.    (6) 
 
Operators Q

(p)
k(φ,θ,γ) have been introduced (Sventkovsky, 

2004) in a symmetric form as a vector for the lower 
indices and an isovector for the upper indices, that is, 
 

Q
(p)

=i X
(p)

 Ĵ+[X
(p)

J], Q
(p)

k=i X
(p)

k Ĵ+ink X
(p)

i Jn= iX
(p)

k-inp X
(i)

k J
(n)

 
 
Ĵ is a linear, differential scalar Lorenz invariant operator 
that  has  properties:  Ĵ Ψ=j Ψ  for  class 2j. It  is  possible
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Figure 2. The visual models of the electromagnetic 
fields that realizes the principle of superposition of 
states. ΨE=sinθ iθ, Ψ

H=sinθ iφ, ΨA=cosθ ir, Ψ
A0=ir. 

 
 
 
because the Wigner D

j
 function can be decomposed into 

a homogeneous polynomial of degree 2j from ψk 
(Equation 2), (Varshalovich, 1975), example Ĵ=1/2 ψk 

/ψk. Further, for the state of class 2j, operator Ĵ will be 
replaced by j everywhere. The operators Q for Ψ of class 
2j have the form: 
 

Q
(3)

1=i j cosφ sinθ+i cosφ cosθ /θ–i sinφ/sinθ /φ+i 

sinφ ctgθ /γ. 

Q
(3)

2=ijsinφ sinθ+icosφ sinθ /θ+i cosφ/sinθ /φ–icosφ 

ctgθ /γ. 

Q
(3)

3=ij cosθ–i sinθ /θ. 

Q
(1)

2=ijcosφ sinγ+ijcosθ sinφ cosγ-isinφ sinγ /φ+icosφ 

cosγ /γ-i sinφ cosγ sinθ /θ. 
Q

(1)
1=-ij sinφ sinγ+ij cosθ cosφ cosγ-i sinθ cosφ cosγ 

/θ-i cosφ sinγ /φ-i sinφ cosγ /γ. 

Q
(1)

3=-ijsinθ cosγ–isinγ ctgθ /φ-icosγ cosθ /θ + 

isinγ/sinθ /γ. 

Q
(2)

1=-ijcosγ sinφ-ijcosθsinγ cosφ+i sinφ sinγ /γ–icosφ 

cosγ /φ+ i sinγ cosφ sinθ /θ. 

Q
(2)

3=ij sinγ sinθ+icosγ sinθ /θ+icosγ/sinθ /γ-icosγ 

ctgθ /φ. 

Q
(2)

2=ij cosφ cosγ–ijcosθ sinφ sinγ+isinθ sinφ sinγ /θ-

icosφ sinγ /γ-i sinφ cosγ /φ. 
 

Under the action of the operator J,Q with upper and lower 
indices +, - and 0 on D

j
m,m' the indices m, m' can increase, 

decrease or remain unchanged (Sventkovsky, 2004). 
Substituting the expression for Q

(p)
, J we can verify that  

Q
(p)

, J have the same Lie algebra (7) as the Lie algebra of 
the Lorentz group (Equation 5), where p=1,2,3 
corresponded to tree angular presentations (the spinor, 
tensor presentations) of the Lorentz group, that is, 
                 

[Ji, Jn]=iink Jk, [Q
(p)

i , Jn]=iink Q
(p)

k ,[Q
(p)

i ,Q
(p)

n ]=-iink Jk. (7) 
 
The Lorentz transformation  v=|v|x3 with the (boost) 
generator Q

(3)
3 , p=3 is independent of φ and γ  and is 

symmetrical with respect to two observers X3 and X
(3)

, 
hence  φ'=φ,  γ' =γ , th(χ)=v/c (13). 
 

  
 
The Lorenz transformations in Minkowski space and in 
the space of orientations respectively of four-dimensional 
vectors A,A0 and X

(3)
,X

(0)
0 , bivectors E, H and X

(1)
, X

(2)
,as 

well as spinors C and  =ξ
(±j)

 are opposite, inverse to 
each other, but the transformations of the vectors under 
the spatial rotation are the same. This ensures fulfillment 
of Sommerfeld condition about Lorentz invariance: 
 

A = AX
(3) 

+ A0 X
(0)

0 c 

EH=EX
(1)

+HX
(2)

, =C. 

The Lorentz transformation  v=|v|x3 with the (boost) generator Q
(3)

3 , p=3 is 

independent of φ,γ  and is symmetrical with respect to two observers X3 and X
(3)

, 

hence  φ' = φ,  γ'  = γ , th(χ) = v/c, (13). 

 

exp(−i_Q
(3)

3)    X
(3)

3=    ch(χ)   sh(χ )    X
(3)

3 

                         X
(0)

0        sh(χ)  ch(χ )      X
(0)

0      , 

 

                          x3'=       ch(χ)   sh(-χ)     x3 

                          t' с         sh(-χ)  ch(χ)      t с 

 

 
 

 

Figure 3: The Lie algebra of the generalized Lorentz group(a, b). (a) is a group of 

external symmetry three representations of the Lorentz group (in the space of 

orientations),(b) is a group of internal symmetry, three representations 

of the transpose Lorentz group. 
 

The Lorenz transformations in Minkowski space and in the space of orientations 

respectively of four-dimensional vectors A,A0 and X
(3)

,X
(0)

0 , bivectors E,H and 

X
(1)

,X
(2)

,as well as spinors C and   =ξ
(±j)

 are opposite, inverse to each other, but 

the transformations of the vectors under the spatial rotation are the same. This 

ensures fulfillment of Sommerfeld condition about Lorentz invariance 

A= AX
(3)

 +A0 X
(0)

0 c,  EH = EX
(1)

 +HX
(2)

,  = C. 

The Lorentz transformation for angular variables which was obtained earlier 

directly follows from the Lorentz transformations of spinors 



 
 
 
 
The Lorentz transformation for angular variables which 
was obtained earlier directly follows from the Lorentz 
transformations of spinors: 
 
ξ

(±j)
m'=exp(-i χQ

(3)
3 ) ξ

(±j)
m, or ξ

(±j)
m'=exp(±iχ m ) ξ

(±j)
m  , 

Cm'=exp( mχ)Cm, exp(χ)= )/1/()/1( cVcV  , 

tg(θ'/2)=exp(-χ)tg(θ/2). 
 
These transformations of angles correspond to the known 
transformation of angles for polarized light with direction 
velocity along the axis X

(3)
 and velocity v'=-v, (Pauli, 

1958). 
The Casimir operators of the Lorentz group in angular 

representations are operators J
2
-Q

(3)2
, J,Q

(3)
 have been 

obtained from the Casimir operators K
2
-L

2
,LK of the  

Lorenz group by replacing the generators of the Lorentz 
group L,K by J,Q

(3)
. The irreducible representations of   

the Lorentz group are characterized by a pair of numbers 
corresponding to the eigenvalues of the operators Z

2
± 

where Z±=(J ± iQ
(3)

)/2, [Z± Z±]=iZ±, [Z+Z-]=0. 
The spinors ξ

(j)
, ξ

(-j) 
are transformed, respectively on 

irreducible representation (j,0) and (0,j), because 
Z

2
+ξ

(j)
=j(j+1) ξ

(j)
, Z

2
-ξ

(j)
=0, Jk ξ

(±j)
=ξ

(±j) 
Sk,  Q

(3)
ξ

(±j)
=±i ξ

(±j) 
S. 

The matrix representations of these two-irreducible 
spinor representation of the Lorentz group for an arbitrary 
j can be obtained from (7), p=3 by replacing the operators 
Jk,Q

(3)
k on their matrix representations in the spinor basis 

j, ψ=ξ
(j)T

or ψ=ξ
(j)T

,  as  <ψ
T
|Q

(3)
k|ψ>. 

The elements of ξ
(±j)

m whose Lorenz transformation has 
no an additional component are the eigenfunctions of 
Q

(3)
3. 

 
Q

(3
3ξ

(±j)
m=±im ξ

(±j)
m, J3ξ

(±j)
m=m ξ

(±j)
m 

 
The bivectors X

(-)
,X

(+)
 are transformed respectively on 

irreducible representations (1, 0) and (0, 1) of the Lorentz 
group, because Z

(±)2
X

(-)
=X

(-)
(1±1). The four-vector X

(3)
 and 

X
(0)

0 is transformed on irreducible representation (1/2, 
1/2), because Z

(±)2
X

(3)
=3/4X

(3)
. Thus, the representation of 

the Lorentz group (Equation 7) for the class 2 in 10-
dimensional basis ψ=X

(i)
n splits into irreducible vector 

representations for the basis X
(3)

 and X
(0)

0 and into adjoint 
representation for the real basis X

(1)
 and X

(2)
. 

 
 
Definitions 
 
The Generalized Lorentz group (Equations 1, 7 and 8) is 
the group consists of 16 generators  Ĵ, Jn, J

(k)
 and Q

(n)
k 

which was obtained by combining the known angular 
representation of the Lorentz group (Equation 7) 
(Sventkovsky, 2004) and its transposed angular 
representation. 
 

[Q
(n)

i ,Q
(p)

k ]=iδik npm J
(m)

-i δnp ikn Jn, [Q
(i)

p, J
(n)

 ]=iink Q
(k)

p (8) 

 
The generalized group  provides  symmetry  between  the  
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representation and transpose representation of the group 
or between the vector rotations of the original local 
observer and the isovector rotations of the rotated local 
observer, it is illustrated in Figure 3. The symmetry 
operator W retains the invariance of the Lie algebra of the 
generalized Lorentz group Q

(n)
k=(-1)

(k+n) 
W Q

(k)
n. 

Matrix representations of the generators of the 
generalized Lorentz group (Equations 1, 7 and 8) in the 
basis bi-spinor, j=1/2 corresponding the replacement of 
Jn, J

(k)
,Q

(n)
k , Ĵ by S

(0)
n , S

(k)
, S

(0)
k S

(n)
, j matches 16 basis 

elements of the full Clifford algebra formed from Dirac’s 
gamma matrices (Fluge, 1974). The proof uses identities: 

 

Jn ψ = ψ S
(0)

n , J
(k)

 ψ =  ψ S
(k)

, [S(k)
, S

(n)
]=-i knp S

(p)
,  

Q
(n)

k ψ=2i J
(n)

Jk ψ=ψ 2iS
(n)

S
(0)

k , 2J
(3)

ψ =ψ  g4, 2J
(1)

ψ=ψ g0,  
2J

(2)
ψ=ψ ĝ0, 2Q

(2)
ψ =ψ  g, 2Q

(1)
ψ =ψ ĝ, <ψ

T
 |Jk|ψ>=S

(0)
k 

 

Where g0, g and ĝ0, ĝ-gamma Dirac matrices in the Weyl 
basis 
 

 (7) 
 

The infinitesimal generator of the Lorentz group Lk and Kn 
(Ohnuki, 1988) are identical to matrices <ψ

T
|Jk| ψ>, <ψ

T
 

|Q
(3)

n | ψ>by using the basis  ψ=(X
(0)

0,X
(3)

1 X
(3)

2 X
(3)

3). This 
can be easily checked using (13). The study can also 
verify that ten generators of the Poincare group in 
angular (spinor) representation J, Q

(3)
, Q

(-)
, i J

(-)
, for p=3, 

which were obtained using the generators of the 
generalized Lorentz group, have the same Lie algebra 
(Equations 5 and 6) of the ten generators of the Poincare 
group L,K,P and P0, where Q

(-)
=Q

(1)
+i Q

(2)
. Four-

dimensional vector (P
(-)

, P
(-)

0 )=(Q
(-)

, i J
(-)

) can be regarded 
as analogous to the momentum operator in the Lie 
algebra of angular variables, since they have the same 
Lie algebra as Poincare group. It is illustrated in Figure 4. 

The study can also verify using the Baker-Campbell-
Hausdorff formula that generators of the Poincare group 
in angular representation have the known transformation 
properties under the Lorentz transformation, (J,Q

(3)
) 

transformed as bivector, (Q
(-)

, iJ
(-)

) transforms as four-
vector momentum, J

(3) 
transform as scalar. Generalized 

Lorentz group is realized in the space of orientations. 
The Pauli-Lubanski vector in the operator angular 

representation has the equivalent form Ŵ0=(PJ), Ŵ=P0J-
[PQ

(3)
] that is obtained from Pauli-Lubanski vector by 

replacing the matrices L and M by the operators J,Q
(3)

. 
The operators Ŵ0 and Ŵ in the matrix representation 
J,Q

(3) 
in the corresponding basis is identical to the original 

Pauli-Lubanski vector. 
The second Casimir operator of the Poincare group for 

the seven-dimsenional space has the equivalent form 
(Ŵ0

2
-Ŵ

2
) that is obtained from the second Casimir 

operators by replacing the Pauli-Lubanski vector by 
Pauli-Lubanski vector in angular representation. 
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Figure 3. The Lie algebra of the generalized Lorentz group (a, b). (a) is a group of external 
symmetry three representations of the Lorentz group (in the space of orientations),(b) is a group 
of internal symmetry, three representations of the transpose Lorentz group. 

 
 
 

 
 

Figure 4. The relationship between Poincare group in different 
representations and transpose group of rotation that is considered as the 
group of internal symmetry J(k). 

 
 
 
The generalized Dirac, Maxwell, Weyl equations 
  
The operator part of the Poincare invariant equations for 
the wave function which has the momentum operators in 
the first degree are invited to express in symmetric form 
an equal to the scalar product of two four-dimensional 
vectors of the momentum operators for space-time and 
for space of the orientations. We have: N

(±)
=P

(±)
P-P

(±)
0 P0 

where N
(
 

)
=N

(1)
 ± i N

(2)
 is complexified operator, below 

used real invariant operators: 
 
N

(1)
=Q

(1)
P+J

(2)
P0/c, N

(2)
=Q

(2)
P-J

(1)
P0/c. 

 
Thus Poincare invariant equations for the wave function 
can consist of two equations have different spatial 
parities corresponding to an even operator: 
 
N

(1)
=ṔÎ N

(1)
 and an odd operator N

(2)
=-ṔÎN

(2)
. These 

equations will be  referred  to  as  the  generalized  Dirac,  

Maxwell, Weyl equations. 
The generalized Maxwell equations for the class 2j=2, 

describing the spinless state and its analogue have the 
form (Equations 9 and 10): 
 

Ψ=EX
(1)

+HX
(2)

, < Ψ|Ji|Ψ>=0, < Ψ |J
(k)

| Ψ >=0 
 

N
(1)

 Ψ =4π ΨC                                                                                               (9) 
 

N
(2)

 Ψ =0.                                                                   (10) 
 

where ΨC=IX
(3)

+I0 cX
(0)

0 , I=(I1, I2, I3) is vector density of 
electric current , I0 is the density of the electric charge. 

Representation of generalized Maxwell Equations (9) 
and (10) in the basis X

(k)
n are equivalent to the Maxwell 

equations  
 

[PH]+P0E/c=-i4π/c I,  (PE)=-i4 π I0,                              (11) 
 
[PE]-P0H/c=0, (PH)=0.                (12) 



 
 
 
 
For proof, we substitute in (9.10) the form Ψ, N

(1)
 and N

(2
  

and use identity: 

 
J

(i)
X

(n)
p=-iinkX

(k)
p, Q

(n)
k X

(0)
0=ij X

(n)
k,           (13) 

 
Ji X

(p)
n=iink X

(p)
k , Q

(m)
i X

(p)
n=iδi,nδm,pX

(0)
0+iinkmpd X

(d)
k. 

(Q
(1)

P+J
(2)

P0/c)Ψ=(i[PH]+iP0E/c)X
(3)

+i(PE)X
(0)

0=4π(IX
(3)

+I0
X

(0)
0 ). (Q

(2)
P-J

(1)
P0/c) Ψ=(-i[PE]+iP0H/c)X

(3)
+i(PH)X

(0)
0=0. 

 
Equating to zero the coefficients in Equation 9 and 10 at 
each of the bases X

(3)
k and X

(0)
0 , we obtained, 

respectively, a second (Equation 11) and a first pair of 
Maxwell’s equations (Equation 12). 

The normalization of the wave function in the double 
space of orientations (over the angles) at the point x1, x2, 
x3, is equal to the energy density of the electromagnetic 
field: b

2
<ΨEH |ΨEH>/(8 π)==(E

2
+H

2
)/(8 π). 

The Poynting vector are written in the form: 
                         
-i c b

2
<ΨEH|Q

(3)
| ΨEH>/(8 π)=c[EH]/(4π), 

 
The generalized Dirac equation j=1/2,1, 3/2 , . . . have the 
form (Equations 14 or 15). Representation (Equations 14 
or 15) in the basis, j=1/2, (2) coincide respectively with 
the ordinary Dirac equations (Equations 16) for the 
electron Ψ=ψ C or with the Dirac equations (Equation 17) 
for the unknown particles Ψ^=ψ Ĉ, me is the mass. 

 
 N

(2) 
Ψ=mec/(2h) Ψ                                                     (14) 

 N
(1) 

Ψ^=mec/(2h) Ψ^                                                 (15) 

 
For proof, we substitute in (Equations 14 and 15) the 
form of N

(1)
, N

(2)
 ,  ψ=(ψ1,  ψ2, ψ3,  ψ4), (2).  and using the 

identities N
(2)

ψ=ψ (g P-g0 P0/c), 2N
(1)

ψ=ψ(ĝ P-ĝ0 P0/c).   
Equating to zero the coefficients at each from the 

bases ψk in (Equations 14 and 15), identically we obtain 
equation Dirac in chiral representation with matrices, 
respectively g, g0 (Ryder, 1987), (16) and ĝ, ĝ0, (Ryder, 
1987): 
                         
(g P-g0 P0/c+mec/h) C=0.                                          (16) 
                         
(ĝ P-ĝ 0 P0/c+mec/h) Ĉ=0.                                         (17) 

 
The spinor Lorentz transformation of the N

(2)
 when using 

a basis ψ=(ψ1, ψ2, ψ3, ψ4) corresponds to the 
transformation group SL(2, С), relativistic spin group: 

       
ψ'=ψU, U

-1
(ψ*

T
 N

(2) 
ψ) >U=U

-1
 (gP-g0/c P0) U , ψ=(

(1/2)T
, 


(-1/2)T

) 
U

-1
 (g P-g0/c P0) U=g P'-g0/c P'0 , 

 
U

-1
= U*

T
 space rotation, ξ

(±1/2)
m'=exp(±m χ) ξ

(±1/2)
m  for 

Lorentz rotation. 

Solution of these Equations 14 and 15 for a particle at 
rest, assuming that the term with the momentum operator  
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P vanish, correspond to standard representation of basis 
and has the form: 

 
-J

(1)
P0/c Ψ=mec/(2h) Ψ,   J

(1)
Ψ=  Ψ/2                          (18) 

 
J

(2)
P0/c Ψ^=mec/(2h) Ψ^,  J

(2)
Ψ^=± Ψ^/2                      (19) 

 
Decisions have a zero balance between left and right 
 
Ψ=C(ξ

(1/2)
 ξ

(-1/2)
), Ψ^=Ĉ (ξ

(1/2)
±i ξ

(-1/2)
),  

<Ψ|J
(3)

|Ψ>=0,<Ψ^|J
(3)

|Ψ^>=0. 
 
At the inner inversion, electron becomes the positron 
(Equations 16, 18 and 20) and on the contrary, but the 
unknown particle remains unknown particle (Equation 17, 
19 and 21): 
 
Î (ξ

(1/2)
 ξ

(-1/2)
) =±(ξ

(1/2)
 ξ

(-1/2)
)             (20) 

 
Î (ξ

(1/2)
±i ξ

(-1/2)
)=±i(ξ

(1/2)
±i ξ

(-1/2)
)           (21) 

 
Generalized Weyl equation with spin j=1/2 for Lorentz 
invariant Ψ

(±)
=C

(±) 
ξ

((±1/2)
 is identical to the Weyl equation 

(Akhiezer and Berestetskii, 1965), for right or left 
neutrinos, have view: 
 
N

(±) 
Ψ

(
 

)
=0, or, (-P0c ± P σ) C

(±)
=0.            (22) 

 
Balance for the state Ψ

(±)
  between left and right violated, 

as J
(3)

Ψ
(±)

=±Ψ
(±)

/2. 
 
 
Theorem 2 
 
Mirror symmetry of basis states with spin j=1/2. The 
mirror basis μ

(±1/2)
=ξ

((1/2)
  i ξ

((-1/2)
is unique. No other bases 

with this property exist. This basis is not changes under 
the inversion Î μ

(±1/2)
=±i μ

(±1/2)
. 

The proof follows from the completeness set of the basis 
and the choice of a basis in the form of linear 
combinations of basis ξ

((1/2)
 and ξ

((-1/2)
. 

 
 
Theorem 3  
 
Mirror antisymmetry of basis states with spin 1/2. There is 
a subgroup of transformations η

(1/2)
=cos(β/2) ξ

(1/2)
-sin(β/2) 

ξ
(-1/2)

, η
(-1/2)

=sin(β/2) ξ
(1/2)

+cos(β/2) ξ
(-1/2)

  for any β, when 
the bases are transformed into each other under 
inversion  Îη

(±1/2)
=±η

((
 

1/2)
.  

The proof is similar. Thus, there is a plurality of bases 
having mirror antisymmetry property η

(±1/2)
, but there is 

only one basis with mirror symmetry property μ
(±1/2)

. It is 
additionally assumed that particles in rest with a nonzero 
mass have a zero balance between the left and the 
right<η

(±1/2)
|J

(3)
|η

(±1/2)
>=0 which is implemented for  β=π/2. 

The  symmetry  of  Maxwell’s  equations  when (E,H)  is  
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replaced by (-H,E) is called the electromagnetic duality. 
In general, there is a Heaviside-Larmor-Raynicha 
subgroup (HLR) (Konopelchenko, 1977): 

 
E'=E cos(α)+H sin(α), H'=-E sin(α)+H cos(α ). 
 
These transformations correspond to the turn of the 
rotated local observer about axis X

(3)
 by angle α or to 

Ψ'=exp(iα J
(3)

) Ψ, γ'=γ+α  in the framework 
transformations of generalized Lorentz group. Example, 
the use of the invariance of Ψ'=Ψ and  Ψ=EX

(1)
+HX

(2)
, 

α=π/2, X
(1)

(γ)=-X
(2)

(γ+π/2), X
(2)

(γ)=X
(1)

(γ+π/2) are obtained 
conversion, yields transformations H'=-E,E'=H. The 
transformations preserve balance between the left and 
right <Ψ' |J

(3)
|Ψ'>=0,<Ψ|J

(3)
|Ψ>=0. 

The transformation γ'=γ+π/2 leads to transition into 
each other operators N

(1)
, N

(2)
 that is N

(1)
(γ)=-N

(2)
(γ+π/2), 

N
(2)

(γ)=N
(1)

(γ+π/2). 
In this case the mirror anti-symmetry of particles is 

replaced by the mirror symmetry and vice versa. The 
particle with mirror antisymmetry under inner inversion 
and spatial inversion, converted into antiparticle, but 
particle with a mirror symmetry j=1/2 converted into itself, 
that is, not converted to the antiparticle (Equations 14 
and 15), as ṔÎN

(2)
=-N

(2)
 and ṔÎN

(1)
=N

(1)
. 

Transformation γ'=γ+π/2 of the generalized Dirac 
equation for the electron (Equations14 and 16) leads to 
the generalized Dirac equation for the unknown particles 
(Equations 15 and 17) and vice versa. 

Transformation γ'=γ+π/2 of the generalized Maxwell 
equations leads to the following changes: Maxwell’s 
generalized equations (9 and 10) are replaced by 
Maxwell’s generalized equations (24 and 25) that 
describe the existence of only magnetic charge: Equation 
9 is replaced by Equation 24 and Equation 10 is replaced 
by Equation 25, with renaming electric charge (Equation 
9) as magnetic charge (Equation 24) and renaming zero 
magnetic charge (Equation 10) as zero electric charge 
(Equation 25). Thus: 

   
ΨC=IX

(3)
+I0cX

(0)
0 is replaced by ΨM=IMX

(3)
+IM0 c X

(0)
0 

because X
(3)

(γ)=X
(3)

(γ+π/2). 
 
N

(2) 
Ψ =4π ΨM.                                                  (23) 

 
N

(1)
 Ψ=0.                                                                  (24) 

 
Matrix representations (Equations 23 and 24), when 
(Equation 13) is used, are identical to the Maxwell 
equations only in the case of existence of the magnetic 
charge. 

Given the unified nature of the spin states for all j, the 
uniform representation of the equations of Dirac and 
Maxwell in the form of the generalized equations of Dirac 
and Maxwell whose matrix representations coincide with 
Dirac’s and Maxwell’s equations, as well as because the 
magnetic monopole is an consequence  of  the  existence  

 
 
 
 
of duality symmetries in electrodynamics, the following 
axiom is proposed: 

The transformation γ'=γ+π/2 of the generalized Dirac 
equation and the generalized Maxwell equations leads to 
the same results. In other words, it is the transformation 
that implements the dual symmetry (generalized) of the 
Dirac equation and Maxwell’s equations in the exchange 
of electric and magnetic charges. That is, a particle with 
electric charge (electron) is replaced by a particle with 
magnetic charge. Hence the unknown particles 
(Equations 15 and 19) are the Dirac monopole. The 
results are shown in Figure 5. 

The transformation γ'=γ+π corresponding to rotation 
about axis X

(3)
 by angle π leads to a change in sign of the 

operators N
(1)

,N
(2)

 which corresponds to a change of sign 
of the mass of particles (Equations 14 and 15), that is 
replacement of electron or monopole on antiparticle 
(Figure 5). 

In nature, there are no elementary particles with spin j > 
1/2 which correspond to the generalized Dirac equation 
with non-zero mass and, as their should to be presented 
only in the basis ξ

(±j)
 which has no extended component 

under the Lorentz transformations. Given the nature of 
the ladder operators in the generalized Dirac equation for 
ξ

(±j)
, one can immediately see that such solutions 

do not exist. 
 
 
Superconductivity 
 
The known relationship H=i[PA], E=iP0A/c-iPA0 between 
the vector potential of magnetic field, potential  of electric 
field and fields E,H. is identical to equitation N

(1) 
ΨA=ΨEH   

,  ΨA=AX
(3)

+A0с X
(0)

 and ΨEH=EX
(1)

+HX
(2)

 . 
The generalized Dirac equation (Equation 25) of class 

2 for Lorentz invariant Ψ=ΨEH+1/Λ ΨA, where Λ is the 
constant length, using (Equation 13), splits into two 
equations for ΨEH, ΨA 

 

                                
N

(1) 
Ψ=1/Λ Ψ.                                                          (25) 

 
or (N

(1) 
ΨEH=-ΨA/Λ

2
,  N

(1) 
ΨA=ΨEH) . 

 
First equitation is identical to the Maxwell equations 
(Equations 11 and 9) if it is denoted by js=-Ac/(4π

2
), 

j0s=A0/(4 π
2
) as the electric current. This corresponds to 

the first London equation for superconductivity where Λ is 
the depth of penetration, 2h/(Λ c) can be associated with 
the mass of a heavy virtual photon. 

The generalized Maxwell equations whose 
representation are equivalent to the Maxwell equations 
(Equations 11 and 12) and describe a just right state or 
only left state with analog spin or chirality ±1, have the 
following form: 

  
N

(1) 
Ψ

(±)
=4 π ΨC, N

(2) 
Ψ

(±)
= i 4 π ΨC, Ψ

(±)
=F

(
 

)
X

(±)
, 

J
(3) 

Ψ
(±)

=± Ψ
(±)

, b
2
<Ψ

(±)
 |J|Ψ

(±)
>=±4[EH]. 
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. 
 

Figure 5. An analogue of the spin projection of J(k) for a rotated 
local observer for particles with spin j=1/2, for an electron or a 
monopole at rest, for a neutrino flying at the speed of light. 

 
 
 
The proof is similar. The spins of the left and the right 
states are opposite to one another. The existence of 
high-temperature superconductivity is probably due to 
exchange of spin of the electromagnetic field in the chiral 
state and the orbital moment.  
 
 
Conclusion 
 
In the isotropic Minkowski space, the multicomponent 
wave function Ck  |k>  corresponding to the spin,  vector 
states equivalently is described  by a one-component 
wave function Ck ψk  that depends on the position x1, x2, 
x3, t and the orientation φ, θ, γ of the local rotated 
observer. This corresponds to the replacement of the 
matrix basis | k> by an operator basis ψk, that depends 
only on φ, θ, γ with the same transformation properties as 
for the matrix basis. φ, θ, γ may be interpreted as the 
possible orientation of the particle. Any angular 
dimensions (not are tied) does not depend on a specific 
spatial point since they are the same for all points of the 
space x1, x2 and x3.   

For a unified description of states with spin j, vector and 
tensor fields dependent on the orientation of the meter, a 
state of a class 2j was introduced as a class of functions 
Ψ =ψ C which may be represented by a homogeneous 
polynomial of degree 2j of  D

(1/2)
m, m'. 

The known difficulties associated with the ambiguity of 
the transformations under the imbedding of a new space 
into   the    Minkowski    space    (Cartan,    1927)     were 

successfully overcome by considering a well-known class 
of functions 2j, (describing spinors, tensors) invariant 
under the Lorentz transformation and after determining 
the operators of the Poincare group for it in the angular 
representation. 

The Lorentz group in matric representation was 
essentially expanded to the generalized Lorentz group 
due to the inclusion in it of transposed representations 
the Lorentz group, namely: Generators of two well-known 
groups in the angular representation corresponding to the 
rotation group SU(2), Jn and the transposed rotation 
group SU(2), J

(k)
 and also the generators of the Lorentz 

group Q
(p)

 for different angular representations p=1,2 and 
3 form a generalized Lorentz group. 

The symmetry of the generalized Lorentz group 
consists in its invariance with respect to the transpose 
operation in the matrix representation (or under the action 
of the operator W) and corresponds to the symmetry 
between the original observer and the rotated local 
observer. 

The generalized Lorentz group besides transformations 
associated with the Lorentz group has an additional 
degree of freedom which can be considered as the 
transformations of internal symmetry. If the operators of 
the group Q

(p)
, J are in correspondence with the 

operators of the group K, L in the Lorentz transformation, 
then the operators J

(k)
 in the generalized group do not 

have such correspondence, 
J

(k)
 can be regarded as a generator group of the 

internal symmetry  of  particles,  fields, Ψ (Figure 4).  The  
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spin projection and the directions of the vector field are 
invariant under transformation by means of J

(k)
. Spinors 

and vectors are always transformed into spinors and 
vectors under transformations J

(k)
. The generalized 

Lorentz group in the angular representation has been 
obtained by combining the internal symmetry group J

(k)
 

and the group of external symmetry with generators Q
(p)

 
and J corresponding to the Lorentz group in the angular 
representation. 

Inversion of space is always accompanied by a 
corresponding transformation of internal dimensions. 

Internal inversion: Transformation of  in the mirror state 
can be obtained via (continuous) rotation using the 
generator J

(k) 
within the framework of transformations of 

the generalized group that preserve the invariance of the 
Lie algebra of the Lorentz group in angular 
representation. Therefore, the generalized Lorentz group, 
when spinors and vectors are transformed, includes the 
full Lorentz group. This fact partly explains that the 
parameter space for the SU(2) and SO(3) are different 
from each other twice. 

Main laws nature equation of Dirac, Maxwell is like 
clockwork. All objects, wave function are moved, are 
transformed only with using generators of group, but do 
not move themselves. All objects can be moved over 
short distances with almost no distortion, but only objects 
that are eigenfunctions of generators (generalized) group. 
Figure 5 can be moved with the help of those generators 
without distortion on any distances. For example there is 
an identity: exp(iaPn) exp(ikxn)=exp(ik (xn+a)). 

To obtain the first-degree equation on momentum, 
Dirac introduced a four-dimensional vector (from gamma 
matrices) independent of the coordinates. 

Similarly the article introduces a four-dimensional 
vector P

(+)
k from the new angular dimensions  that do not 

depend  from the coordinates of space-time. 
The simplest equations of nature must be first-degree 

differential equations with respect to dimensions and to 
be Poincare invariant. For this purpose it is advisable to 
use the Casimir operator Pk and Pk of the Poincare group 
in which one of the two momentum operators is replaced 
by the momentum operator in the angular representation 
which is unique for p=3. As a result two real Lorentz 
invariants N

(1)
, N

(2)
, Pk P

(+)
k=N

(1)
-i N

(2)
 have been obtained. 

These operators correspond to the first Casimir 
operators for the seven-dimensional space and have 
been used to obtain Dirac, Maxwell, Weyl equations. The 
matrices, bases were equivalently replaced by operators, 
basis functions with the same transformation properties, 
when introducing angular dimensions. The generators of 
the Poincare group in the angular representation have 
been used to obtain the Dirac matrices and the resulting 
matrix at the momentum operator in the matrix form of 
Maxwell’s equations. 

Generalized equation Dirac and Maxwell have two 
forms of representation N

(1)
, N

(2)
 which correspond to 

different parity at  the  spatial  inversion. There  are  good  

 
 
 
 
reasons to believe that there are no other Poincare 
invariants except the first Casimir operator that are linear 
with respect to momentum operators. 

The Lorentz invariants N
(1)

, N
(2)

 allow to write the 
equations of Dirac and Maxwell in a uniform form for the 
states of class 2j=1, 2 and to generalize these equations 
for any j. 

The quantization of the electric, magnetic charge can 
be regarded as the quantization of the analogue of the 
spin J

(1)
, J

(2)
, (18), namely.  

Generalized Dirac equation for spin 1/2 in the form 
N

(2)
,(14) in the matrix representation is identical to the 

Dirac equation for electron, positron and has a solution 
for a particle at rest, corresponding to a state with a 

mirror antisymmetry and has the projection J
(1) 
=-/2 for 

electron, J
(1) 
=/2 for positron. Scalar, Lorentz invariant 

has the form: 
 

Cg0C
T
=<|J

(1)
|>=<'|J

(1)
|'>. 

 

Generalized Dirac equation for spin 1/2 in the form N
(1)

, 
(Equation 15) in the matrix representation is identical to 
the Dirac equation with matrices g, g0 with corresponding 
to of Clifford algebra has a solution for a particle at rest, 
corresponding to a state with a mirror symmetry, and has 

the projections J
(2) 

=±/2, which was named as 
unknown particle. Pseudo scalar Lorentz invariant, (Jante 
and Schroers, 2016) has the form:  
 

Cg0g4C
T
=<|J

(2)
|>=<'|J

(2)
|'>. 

 

Generalized Weyl equation for spin 1/2 in the form N
(±)

, 
(Jante and Schroers, 2016) is identical in the matrix 
representation to the Weyl equation for neutrino, anti-

neutrino and has a solution , corresponding to a state 

with the projections J
(3) 
=±/2. Since =ψk, (2) is also 

the eigenfunctions of the Q
(3)

3 and therefore  does not 
change shape when the Lorentz transformation. This 
situation corresponds to a particle moving with the speed 
of light along x3 and which may be either right or left,  J

(3) 


(-)

=-1/2
(-)

, 
(-)

=ψ3 correspond antineutrinos J
(3) 


(+)

=½ 


(+)

, 
(+)

=-ψ2-neutrinos. 
Generalized Maxwell equations for class 2j=2 in the 

form N
(1)

, (Equation 9) and N
(2)

, (Equation 10) in the 
matrix representations identical respectively the second 
pair of Maxwell’s equations for electrical charge 
(Equation 11) and the first pair of Maxwell’s equations for 
magnetic charge equal zero (Equation 12). It should be 
noted that generalized Maxwell’s equations (Equations 

11 and 12) describe state EH without spin. 
Principle of superposition of states always performed 

for states of class 2j in each point and for each 
orientation φ, θ and γ. The existence of the additional 
property of principle of superposition of states for the 
class 2j=1, 2 have been revealed in this paper. This 
property will be named to the property unchangeability 
(same) functional dependence wave  function  (analog  of  



 
 
 
 
form) of the angular dimensions when states are added. 
It was found that for spin states j=1/2 there are only two 
types of independent forms ψ1, ψ4 and for class 2j=2 
there are three types of independent forms X

(p)
3 that 

corresponds different to vector fields. 
In accordance with the decisions of generalized Dirac 

equation, Weyl in nature can only be implemented in 
three types of point particles for spin 1/2, which are 
classified according to different types of symmetry and 
correspond with the three projections of analogue of the 
spin 1/2, J

(k) 
Ψ=±Ψ/2 respectively for electron at rest, for 

monopole at rest, for neutrino at flying. A particle and its 
antiparticle differ a sign of projection J

(k)
. 

Taking into account that the solutions of the 
generalized equations, basis states correspond to 
eigenfunctions of generators of the generalized Lorentz 
group from φ, θ and γ, it can be concluded next: In nature 
for spin (vector) states is realized do not just Lorentz 
group, but generalized an Lorentz group. So some 
physical systems can be represented more accurately by 
using a generalized group Lorentz.  

The determining role of the generators of the 
generalized Lorentz group in the formation of the Dirac, 
Maxwell, and Weyl equations (matrices for the momentum 
operators (Dirac matrix) and also of irreducible 
representations of the Lorentz group are shown. 

A number of known transformations, such as inversion, 
Heaviside-Larmor-Raynich, charge conjugation, transition 
to different representations were equivalently unified and 
represented using the transformations of the group J

(k)
 

within the framework of transformations of the 
generalized Lorentz group.  

The superconductivity is proposed to be considered as 
a manifestation of the additional degree of freedom 
associated with the transformations of the generalized 
Lorentz group. The generalized Lorentz group in the 
matrix representation exists regardless of the use or non-
use of angular variables. Three bases of the class 2j=2, 
ψ=X

(+)
,X

(-)
, (X

(3)
,X

(0)
0) correspond to three irreducible 

representations of the Lorentz group (1, 0, 0, 1, 1/2, 1/2) 
and have three Lorentz invariant of Ψ. The existence of 
three Lorenz invariants Ψ

(±)
=F

(
 

)
X

(±)
,ΨEH+ΨA/Λ for the 

electromagnetic field E,H, A,A0 leaves the possibility of a 
transition from one state of Ψ to another in the framework 
of the transformations of the generalized Lorentz group 
and which are composed from linear combination of this 
three Lorenz invariants. One and the same 
electromagnetic field corresponding to the Maxwell 
equations, can correspond to different Ψ

(±)
=F( ) X

(±) 
or 

Ψ=ΨEH. The Lorentz invariants ΨEH, ΨA cannot describe 
state with spin, chirality, for example of photon, but Ψ

(±) 

can, as b
2
<Ψ

(±)
|J|Ψ

(±)
|>=±4[EH] is the direction and value 

of spin. Given the above, the following mechanism for the 
transition of a conductor to superconducting state 
proposed. The low-temperature superconductivity 
corresponds to a spontaneous transition to spinless state: 
Ψ=ΨEH+ΨA/Λ. 
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The high-temperature superconductivity (in iron-based 
materials) can correspond to a spontaneous transition to 
left (right) state Ψ

(±)
, that correspond to chiral 

superconductors J
(3)

Ψ
(±)

=±Ψ
(±)

. 
The observed difference between left and right chiral 

superconductivity (Zyga, 2017), when a magnetic field is 
applied parallel to a superconducting chiral nanotube, 
electric signals travel in one direction only, can be 
explained by the existence of a spin of the 
electromagnetic field proportional to the Poynting vector 
but differently directed for the left and the right states. 

Taking advantage of the fundamental provisions of the 
theory of groups, whereby the result of operations on one 
class 2j=2 automatically transferred to the result of the 
same operations on another class 2j=1 of the same 
group, has been offered the following axiom: The 
transformation γ'=γ+π/2 leads to an exchange of forms 
N

(1)
 and N

(2)
 in generalized Dirac equation and in 

generalized Maxwell equations, formally leads to the 
same results, namely: Since generalized Maxwell’s 
equation for a particle of class 2j=2 with the electric 
charge is transformed into generalized Maxwell’s 
equation for particles with a magnetic charge. Matrix 
representation of this equitation in the basis X

(n)
k ,X

(0)
0 

coincide with corresponding the equations Maxwell, 
consequently generalized Dirac equation of class 2j=1 for 
an electron is transformed into generalized Dirac 
equation for the Dirac monopole. Matrix representation of 
this equation in the basis j=1/2, bispinors, (2), also 
coincide with corresponding the Dirac equations. From 
the (generalized) equation it follows that is an unknown 
particle has a mirror symmetry for and coincide with Dirac 
monopole. 

The difference between an electron and the Dirac 
monopole is difference in types of mirror symmetry, a 
monopole is a mirror particle and an electron has a mirror 
antisymmetry. The possibility of the existence of the Dirac 
monopole is determined by the possibility of the 
existence of a mirror particle.  

The Dirac monopole in a state of rest with spin 1/2 has 
a unique basis with mirror symmetry, that is, it does not 
change under the inversion, but there are a lot of bases 
state of spin 1/2, with mirror antisymmetry (the particle 
passes into the antiparticle). This circumstance, which 
need to explore and the possible can dramatically reduce 
the likelihood of the occurrence of such particles (the 
Dirac monopole), when there is a transition to a unique 
basic state down to zero. 

The subspace of angular dimension plays an important 
role in the formation of the basic laws of nature. The 
basic operator N

(±)
 is an analog of the Casimir operator 

and is written in a symmetric form with respect to the 
coordinate space and the double orientation space as 
products of the momentum operators for each spaces. 

The existence only of three different (angular, spinor) 
purely complex representations of the Lorentz group 
simultaneously   in   the   framework   of  the  generalized 
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Lorentz group can be considered as a justification for the 
existence of three generations of leptons (electrons, 
muons, tau-leptons). 

The existence only of three different (angular) purely 
complex representations of the transpose Lorentz group 
(as shown in Figure 3) simultaneously in the framework 
of the generalized Lorentz group can be considered as a 
justification for the existence of three color charge of 
quarks. 

According to group theory, the result does not depend 
on the form of the representation. Because, in some 
cases, compared with the standard matrix approach, the 
use of operators from angular dimensions has a more 
obvious physical interpretation, simplicity and generality 
representation for any j.  
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Geotechnical tests were carried out on twenty subsoil samples obtained from ten locations at the depth 
of 1 and 2 m within Federal University of Technology, Akure, Nigeria. The area is typical of basement 
complex. The test include; Natural Moisture Content, Grain Size Analyses, Specific Gravity, Atterberg 
Limits, Compaction, California Bearing Ratio (CBR), and Unconfined Compression Tests. The ten 
locations where the soil samples were collected were selected across the geological classification of 
the area. ArcGIS 10.1 software was used to generate maps showing the geotechnical parameters 
distribution across four geological formations within the area at 1 and 2 m depth. It was observed that 
the distribution of each geotechnical parameter correlates with the composition of the weathering end-
product of the geology. The rocks underlain the area includes; Migimatite Gneiss, Quartzite, 
Charnockite and Biotite Granite. The poorest geotechnical parameters were obtained within subsoil 
underlain by Charnockite, hence are most unsuitable soil to host the foundation of civil engineering 
structures, while the area underlie by weathering end-product of quartzite rock is of good geotechnical 
parameters and most suitable soil to host the foundation of civil engineering structures. The weathering 
end-products of Charnockite, Migimatite and Granite rocks give relatively high shear strength than that 
of quartzite, indicating low cohesive nature of the weathering end-product of quartzite. 
 
Key words: Geological classification, geotechnical parameter, weathering, road base. 

 
 
INTRODUCTION 
 
Civil engineering structures are founded on or within the 
earth. Construction of these structures requires prior 
investigation of the chosen site in order to derive a good 
knowledge of the subsoil properties. Lack of the good 
knowledge of the properties of the subsurface materials 
leads to the failure of most engineering structures 

especially roads and buildings. Therefore, it is of great 
importance to carry out pre-construction study of a 
proposed site to ascertain the fitness of the host earth 
material. The pre-construction investigation may involve 
direct mechanical boring, pitting and trenching for subsoil 
sequence delineation, groundwater table mapping, soil
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Figure 1. Map of the Federal University of Technology, Akure showing the study area. 

 
 
 
sampling, and geotechnical laboratory analysis. It may 
also involve non-invasive geophysical investigation 
(Olorunfemi et al., 2010). 

For several decades, geotechnical analysis has 
become increasingly useful in subsurface engineering 
study to obtain information about the physical and 
engineering properties of the subsoil which may include 
the strength, stability and competence of the material that 
make up the subsoil materials, especially the shallow 
section which serves as host for foundations of 
engineering structures (Aina et al., 1996; Adewumi and 
Olorunfemi, 2005; Idornigie et al., 2006). This information 
helps the engineers to correctly locate and design the 
foundation of engineering structures. The information 
also serves as guide to the choice of design and suitable 
materials needed for road construction (Akinlabi and 
Adeyemi, 2014). 

The research is aimed at generating maps that will 
show the distribution of some important geotechnical 
parameters that are valuable for infrastructure 
development planning. This will be related to geological 
distribution within basement complex. The needs to 
evaluate the subsurface condition as related to geological 

formation for appropriate location of civil structures, 
proper designing of the foundation of civil structures has 
necessitated the present research. The study will reveal 
the distribution of geotechnical parameters across the 
various geological classifications. 
 
 
Description of the study area 
 
The study area is a part of the Federal University of 
Technology, Akure Nigeria. The University is situated on 
the northwestern flank of Akure and occupies an area of 
about 5 km

2
 lies between Latitudes 7°17’0’’N – 7° 19’0’’N 

and Longitudes 5° 7’0’’E - 5° 9’0’’E (Figure 1). 
The topography indicates a general gentle slope with 

gradual increase in elevation from the east and south 
towards the north-western part of the area (Figure 2). 

It has an elevation ranging between 372 and 405 m 
above mean sea level. There are some stream channels 
trending approximately east-west and north-south 
direction. The area is characterized by dry (November to 
March) and wet (April to October) seasons and mean 
annual rainfall ranging between 1000 and 1500 mm.  The  



 
 
 
 

 
 

Figure 2. Topographic map of the study area. 

 
 
 
annual mean temperature ranges from 21.9 to 30.4°C. 
Humidity is relatively high during the wet season and low 
during the dry season with values ranging annually from 
39.1 to 98.2% (Akinbode et al., 2008). The vegetation is 
of tropical rain forest which is characterized by thick 
forest. 

The area is underlain by rocks of the Precambrian 
Basement Complex of Southwestern Nigeria (Rahaman, 
1989). The dominant rock types are Granite, Charnockite, 
Quartzite and Migmatite-gneiss (Figure 3). A quartzite 
ridge that extends over 100 m is located on the northern 
part of the area. However, Charnockites occur as discrete 
bodies mainly in the eastern part. Outcrops of migmatite-
gneiss occur around the central and the southwestern 
part of the area. Granites occur as intrusives or lowlying 
outcrop within the migmatite-gneiss. 

Field observation however shows that the granite rocks 
constitute extensive rock outcrops in the northwestern 
and northeastern part of the area. The geology and 
boundaries of lithological units were inferred in places 
where they are concealed by superficial residual soil 
(Kareem, 1995). 
 
 
MATERIALS AND METHODS 

 
The research methodology consist of both field and laboratory 
investigations. The field investigation involves visitation to the study 
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Figure 3. Geological map of the study area showing the sample 
points. 
Source: Modified after Kareem (1995). 

 
 
 
area with the aim of establishing the various geological 
classifications and boundaries. Ten sampling points were selected 
across the area based on the geological classifications. Disturbed 
soil samples were taken at the depth of 1 and 2 m at each sampling 
points, resulting to a total of twenty (20) soil samples. These were 
preserved in polythene bags and transported to the laboratory. 

The Natural Moisture Content (NMC) of the subsoil samples was 
determined in the laboratory within the period of 24 h after 
collection. This was followed by Unconfined Compression Strength 
(UCS) test on a small portion of the soil samples from each 
location. The rest of the soil samples were air dried by spreading 
them out on trays in a fairly warm room for four days. Large soil 
particles (clods) in the samples were broken with a wooden mallet. 
Care was taken not to crush the individual particles. All the methods 
employed in carrying out the geotechnical test complied with the 
procedures specified by the British Standard Institution BS 1377 
(1975). 

The other tests carried out on air dried samples include Grain 
Size Analysis, Specific Gravity, Consistency (Atterberg) Limit, 
Compaction Test, and California Bearing Ratio. 

The change in weight of wet samples put in a can after oven 
drying were measured and recorded for moisture content test. 
Sieve analysis test was conducted on oven dried soil samples using 
set of sieves with mesh size ranging from 4.75 to 0.075 mm after 
the soil samples have been washed off using sieve with mesh size 
0.425 and 0.063 mm which is believed to have removed the clay 
and silt content. The specific gravity of the soil samples were also 
determined by obtaining the ratio between the weight of each soil 
samples and the weight of equivalent volume of water. A 
Cassagrande device, grooving tool and a spatula were used in the 
determination of the plastic and liquid limits of the moist soil
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Table 1. Summary of the results of the subsoil geotechnical test. 
 

Sample 
locations 

Rock Type 
Moisture 

Content (%) 
Clay and Silt 
Content (%) 

Specific 
Gravity 

Liquid 
Limit (%) 

Plastic 
Limit (%) 

Plastic 
Index (%) 

Linear Shrinkage 
(%) 

OMC 
(%) 

MDD 
(kg/m3) 

CBR 
(%) 

UCSS 
(Kpa) 

Depth of 1 m 

1 Migmatite Gneiss 14.8 34.8 2.639 46.2 36.7 9.5 6.4 13.2 1850 27 78.9 

2 Migmatite Gneiss 21.1 35.3 2.694 50 42.9 7.1 9.3 11.86 1788 20 164.9 

3 Migmatite Gneiss 24.2 55.6 2.6 54 43.7 10.4 11.4 19.6 1625 12 69.3 

4 Biotite Gneiss 15.7 29.2 2.601 36.5 22.5 14 7.1 10.6 1887 45 40.4 

5 Quartzite 9.2 24.1 2.802 35 29.2 5.8 4.3 8.3 2142 48 40.6 

6 Quartzite 10.1 27.6 2.761 30.6 20.5 10.1 5 11 1978 33 46.5 

7 Migmatite Gneiss 17.7 37.8 2.55 24.4 16.2 8.2 5 8.4 2055 41 49.5 

8 Biotite Gneiss 19.2 38.4 2.613 42.4 29.9 12.5 7.1 13.6 1978 28 63.1 

9 Charnokite 29.2 45.8 2.578 51 31.2 19.8 9.3 20.04 1578 10 112.1 

10 Charnokite 21.1 41.28 2.687 42.7 28.8 13.9 9.3 13.2 1878 15 145.7 

 

Depth of 2 m 

1 Migmatite Gneiss 16.7 41.4 2.622 45 34.9 10.2 6.4 13.6 1880 24 73.7 

2 Migmatite Gneiss 24.2 48.5 2.676 52 31 21.1 5.7 19.6 1700 15 51.8 

3 Migmatite Gneiss 27.3 58.36 2.614 55.5 46.7 8.8 10.7 22.4 1600 13 80.3 

4 Biotite Gneiss 22.4 34.2 2.498 44.8 36.7 8.1 5.7 22.02 1639 39 57.1 

5 Quartzite 8.3 21.2 2.83 33.1 28.2 4.9 3.6 8.2 2255 54 46.2 

6 Quartzite 13.5 38.4 2.601 35.5 23.2 12.3 6.4 14.5 1820 23 46.2 

7 Migmatite Gneiss 18.2 29.8 2.631 32 18.7 13.3 7.1 8.6 2070 27 34.6 

8 Biotite Gneiss 17.2 26 2.719 38.6 30.3 8.3 5.7 11.4 2052 32 68.5 

9 Charnokite 28.2 47.5 2.604 56 34.5 21.5 8.6 22.08 1608 9 106.8 

10 Charnokite 20.3 40.88 2.619 45.3 31.7 13.6 7.9 16.4 1804 11 102.7 
 

OMC: Optimum Moisture Content, MDD: Maximum Dry Density, CBR: California Bearing Ratio, UCSS: Unconfined Compression Shear Strength. 

 
 
 
samples. The moist samples were also placed in a 
shrinkage mould and oven dried in order to determine the 
linear shrinkage limits of the soil samples. Compaction test 
was done on each of the soil samples using modified 
protor method that employs 4.5 kg rammer and 5 layers 
with 25 blows per layer. 6 kg of air dried soil sample was 
measured and water content of the percentage Optimum 
Moisture Content (OMC) obtained from the compaction test 
was added to each soil sample. The wet soil sample was 
compacted in five layers in the mould by giving each layer 
55 uniformly distributed blows of 4.5 kg rammer. From this, 

California Bearing Ratio (CBR) test was carried out using 
the CBR compression machine. 

A fairly moist soil sample was compacted in an 
unconfined compression mould after it has been lubricated 
with a petroleum jelly. The cylindrical shaped compacted 
soil of diameter 5.0 cm and height 8.8 cm was used after a 
period of 24 hours to conduct Unconfined Compression 
Strength (UCS) test with the aid of the CBR compression 
machine. 

The determined geotechnical parameters of the subsoil 
samples at the depth of 1 and 2 m for each of the ten 

locations was used to generate geotechnical parameter 
distribution map across the geological classification within 
the study area at both depths. 

 
 
RESULTS AND DISCUSSION 

 
Table 1 show the summary of the geotechnical 
test results in the study area. 
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Figure 4. Map of the Natural Moisture Content (NMC) of the subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
Natural moisture content (NMC) 
 
The natural moisture content (NMC) at the depth of 1 and 
2 m ranges from 9.2 to 29.2% and 8.3 to 28.2% 
respectively. The moisture content values are generally 
high, and may be due to the fact that, the samples were 
taken during raining season in May, 2017. The highest 
moisture content (>20%) was observed at south-eastern 
part of the area (Figure 4), which is underlain by 
charnockitic rock (Figure 3). The weathering  end-product 

of charnokite is generally clayey, which is porous but less 
permeable with tendency of retaining high water content 
and may have resulted in the high natural moisture 
content obtained within the south-eastern part of the 
area. Lowest moisture content values (8.3 to 13.5) were 
obtained within the area underlain by quartzite (Figure 3). 
This may be due to the fact that sandy soil which is the 
weathering end-product of quartzite is porous and 
permeable, and hence, water drains and percolates 
easily within it. 

 
(a) 

 
(b) 
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Figure 5. Map of the Percentage of Clay And Silt (PCS) content at Depth of (a) 1 m and (b) 2 m. 

 
 
 
Particle size analysis 
 
The subsoil at depths 1 and 2 m have percentage 
passing 0.075 mm sieve ranging from 24.1 to 55.6% and 
21.2 to 58.4% respectively (Figure 5). The percentage of 
soil passing through sieve 0.075 mm is the percentage of 
clay and silt content contained within the soil. The 
percentage passing 0.075 mm in the area are 
higher/slightly higher than the maximum percentage 
(35%) recommended (Federal Ministry of Works and 

Housing (FMWH), 1972) for a good subsoil material for 
civil eniginering construction purpose. This correlates 
with the geology of the study area. The lowest value 
(21.2%) (Table 1) of the percentage passing 0.075 mm 
sieve was obtained within the area underlain by quartzite 
(Figure 5), showing that the weathering end-product of 
quartzite is sandy. Higher values were obtained within the 
areas underlain by migmatite gneiss and charnockite, 
which shows that the subsoil within this region is more 
clayey with the tendency of higher water ratention capacity. 

 
(a) 

 
(b) 
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Figure 6. Map of the Specific Gravity (SG) of the subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
Specific gravity test 
 
The specific gravity of soil increases with increasing 
compaction and decreasing porosity and compressibility. 
Therefore soils with high specific gravity have good load 
bearing capacity and strength. The specific gravity values 
in the study area range from 2.55 to 2.802 and 2.5 to 

2.83 at 1 and 2 m respectively (Figure 6). Relatively high 
specific gravity values were obtained within the areas 
underlain by quartzite, while areas underlain by other 
rocks were having relatively low values (Figure 6). This 
indicates that, the weathering end-product of quartzite is 
of higher load bearing capacity than the weathering end-
product of other existing rocks within the area. 

 
(a) 

 
(b) 
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Figure 7. Map of Liquid Limit (LL) of the subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
Liquid Limit (LL) 
 
As shown in Figure 7, the Liquid Limit of the subsoil at 
the depth of 1 and 2 m range from 24.4 to 54% and 32 to 
56% respectively. High liquid limit values are indicative of 
poor engineering and geological properties of subgrade 
soils (Jegede, 1995). Liquid Limit of 50% maximum 
(FMWH, 1972) is recommended for sub-grade material 

for engineering constructions, and most of the soil 
samples fall within this value. Therefore the soil can be 
said to be relatively good to host foundation of any civil 
engineering structure. However, the subsoil appears to 
be less competent at the south-eastern and western parts 
of the area due to the high Liquid Limit values within the 
regions (Figure 7). The regions are underlain by 
migmatite and charnockite with higher clayey material  as  

 
(a) 

 
(b) 
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Figure 8. Map of Plastic Limit (PL) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
weathering end-product than quartzite; hence weathering 
end-product of quartzite rock presents more favorable 
engineering characteristics than other rock types in the 
area. 
 
 
Plastic Limit (PL) 
 
Generally, soils having high values  of  Plastic  Limits  are  

considered as poor foundation materials (Akintorinwa and 
Adeusi, 2009). The Plastic Limit (PL) of the subsoil at the 
depth of 1 and 2 m ranges from 16.2 to 43.7% and 18.7 
to 46.7% respectively (Figure 8). Plastic Limit of 30% 
maximum is recommended for sub-grade material for 
engineering constructions (FMWH, 1972). Most of the 
tested subsoil falls within this recommended value (Table 
1). The high value of Plastic Limit (Figure 8) at 
southwestern part of the study  area  must  be  taken  into

 
(a) 

 
(b) 
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Figure 9. Map of Plasticity Index (PI) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
cognizance in erecting any civil structure foundation 
within the area (Figure 8). The Plastic Limit did present 
no correlation with any particular geology, but the high 
values were obtained within the area underlain by 
migmatite. 
 
 
Plasticity Index (PI) 
 
The plasticity index (PI) of the subsoil  at  the  depth  of  1  

and 2 m ranges from 5.8 to 19.8% and 4.9 to 21.5% 
respectively (Figure 9). FMWH (1972) recommended 
Plasticity Index of 20% maximum for sub-grade material 
for engineering constructions. The Plasticity Index of the 
soil samples mostly fall within the recommended range. 
According to Cassagrande (1972), such soil can be said 
to be of low to medium compressibility and are therefore 
suitable for civil engineering construction. Plasticity Index 
(PI) values slightly higher than 20% were obtained at 
locations 2 and 9, at the depth of 2 m. Soil  samples  from  
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Figure 10. Map of Linear Shrinkage (LS) of subsoil at Depth of (a) 1 m and (b) 2 m. 

 
 
 
these two locations are of relatively higher compressibility 
and falls within Charnockite and migmatite lithological 
units. The lowest value was obtained on subsoil underlain 
by quartzite rock. 
 
 
Linear Shrinkage (LS) 
 
The knowledge of the Linear Shrinkage of soil is very 
essential in certain geographical areas where soil 
undergo large volume change when going through wet 
and dry season’s cycle. Generally, the lower the Linear 
Shrinkage of soil the lesser  the  tendency  of  the  soil  to 

shrink when desiccated. The Linear Shrinkage of all the 
soil samples tested range from 4.3 to 11.4% and 3.6 to 
10.7% at 1 and 2 m respectively (Figure 10). Linear 
Shrinkage value ≤ 8% is indicative of a soil that is good 
for sub grade material for engineering construction (Brink 
et al., 1992; Madedor, 1983). Most of the soil samples fall 
within the neighborhood of this recommendation. 
Migmatite and the Charnockite rocks while the lowest 
value is within the quartzite rock (Figure 10). 

Migmatite and the Charnockite rocks while the lowest 
value is within the quartzite rock (Figure 10). Migmatite 
and the Charnockite rocks while the lowest value is within 
the quartzite rock (Figure 10). The weathering end-
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(b) 
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Figure 11. Map of Optimum Moisture Content (OMC) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
product of Migmatite and Charnockite rocks usually 
contains high percentage of clay than other rock types 
and they consequently have more tendencies to shrink. 
 
 
Compaction characteristics 
 
The importance of compaction test is to improve the 
desirable load bearing capacity properties of a soil 

(Akintorinwa and Adeusi, 2009). The degree of 
compaction is sensitive to moisture content. The best 
subsoil for foundation of engineering structures is that 
with high Maximum Dry Density (MDD) at low OMC 
(Jegede, 1999). The Optimum Moisture Content (OMC) 
values of the soil samples at 1 m depth range from 8.3 to 
20.04%, and that of 2 m depth range from 8.2 – 22.08% 
(Figure 11). It was observed that soil samples within 
quartzite (Figure 11) have the least OMC, while  the  high  
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Figure 12. Map of Maximum Dry Density (MDD) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
OMC values were obtained within the area underlain by 
Charnockite, Granite and Migmatite (Figures 2 and 11). 

The MDD is the density of the soil at which any further 
increase in the moisture content leads to a reduction in 
the unit weight of the soil. The MDD values ranges from 
1578 to 2142 kg/m

3
 and 1600 to 2255 kg/m

3 
at depths of 

1 and 2 m (Figure 12). It was also observed that the 
subsoil within quartzite with the least OMC (8.2 and 

8.6%) have the highest MDD (2055 and 2255 kg/m
3
). The 

highest OMC (19.6 and 22.4%) have the lowest MDD 
(1578 and 1625 kg/m

3
) was obtained within Migmatite 

and Charnokite (Figures 2, 11 and 12). This implies that 
quartzite rock have better compaction characteristics 
than other rocks. The weathering end-product of rocks 
that are clayey may have poor compaction 
characteristics. 
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Figure 13. Map of California Bearing Ratio (CBR) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
California Bearing Ratio (CBR) 
 
California Bearing Ratio (CBR) is a test designed to 
assess the strength of soil. The California Bearing Ratio 
(CBR) of the subsoil at the depth of 1 and 2 m range from 
10 to 48% and 9 to 54% respectively (Figure 13). The 
standard specification of  CBR  recommended  according 

to FMWH (1972) is 80% minimum for subgrade materials 
for road construction in Nigeria. 

The CBR test results has shown that none of the soil 
samples tested has CBR value up to 80% minimum 
recommended for road construction. This cuts across all 
the lithological units but high value was obtained within 
area underlain by quartzite (Figure 13). 
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Figure 14. Map of Unconfined Compression Shear Strength (UCSS) of subsoil at depth of (a) 1 m and (b) 2 m. 

 
 
 
Unconfined Compression Shear Strength (UCSS) 
 
The unconfined compression strength test is highly reliant 
on the cohesive qualities of the binder of the soil particles 
resulting from the clay content. The unconfined 
compressive shear strength ranges from 40.4 to 164.9 
Kpa for the soil at the depth of 1 m, while it ranges from 

34.6 to 106.8 Kpa for soil at the depth of 2 m (Figure 14). 
These soils can be classified as medium to stiff subsoil. 
The south-eastern and south-western parts of the study 
area where the subsoil have relatively high percentage of 
clay content have high UCSS values, hence high 
cohesive quality of binder material; whereas, reverse is 
the case for  other  parts of  the  study  area.  The  lowest  

 
(a) 

 
(b) 



162          Int. J. Phys. Sci. 
 
 
 
value at the depth of 1 m was obtained within area 
underlain by quartzite rock (Figure 14a). The weathering 
end-product of quartzite may not be suitable as binding 
material for its low cohesive nature. 
 
 
Conclusion 
 
The geotechnical tests include; natural moisture content, 
grain size analyses, specific gravity, Atterberg limits, 
compaction, California bearing ratio (CBR), and 
unconfined compression tests was conducted across four 
geological formations in a typical Basement complex. The 
rock includes; Migimatite Gneiss, Quartzite, Charnockite 
and Biotite Granite. The obtained results show that the 
geotechnical parameters correlate with the weathering 
end-product of the geology. The poorest geotechnical 
parameters were obtained within subsoil underlain by 
Charnockite, hence are most unsuitable soil to host the 
foundation of civil engineering structures, while the area 
underlie by weathering end-product of quartzite rock is of 
good geotechnical parameters and most suitable soil to 
host the foundation of civil engineering structures. The 
weathering end-products of Charnockite, Migimatite and 
Granite rocks give relatively high shear strength than that 
of quartzite, indicating low cohesive nature of the 
weathering end-product of quartzite. 
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